Struct oasis_core_runtime::common::crypto::mrae::nonce::Nonce

source ·
pub struct Nonce { /* private fields */ }
Expand description

120 bit nonce with a 88 bit tag and 32 bit counter. If the counter exceeds 32 bits, then the nonce is no longer valid and must be refreshed with a new random nonce. It is expected that all 128 bits are given randomly. However, the last 32 counting bits may wrap around to ensure 2^32 counts may be used per nonce.

Implementations§

source§

impl Nonce

source

pub fn new(start_value: [u8; 15]) -> Self

Create a new nonce.

source

pub fn generate() -> Self

Generate a random nonce.

source

pub fn increment(&mut self) -> Result<()>

Adds one to the nonce, affecting only the last 32 counting bits. Returns an error iff we’ve exceeded our nonce’s counter capacity, i.e., we’ve incremented 2^32 times. In this case, the Nonce remains unchanged, and all subsequent calls to this method will return an Error.

Methods from Deref<Target = [u8; 15]>§

1.57.0 · source

pub fn as_slice(&self) -> &[T]

Returns a slice containing the entire array. Equivalent to &s[..].

1.77.0 · source

pub fn each_ref(&self) -> [&T; N]

Borrows each element and returns an array of references with the same size as self.

§Example
let floats = [3.1, 2.7, -1.0];
let float_refs: [&f64; 3] = floats.each_ref();
assert_eq!(float_refs, [&3.1, &2.7, &-1.0]);

This method is particularly useful if combined with other methods, like map. This way, you can avoid moving the original array if its elements are not Copy.

let strings = ["Ferris".to_string(), "♥".to_string(), "Rust".to_string()];
let is_ascii = strings.each_ref().map(|s| s.is_ascii());
assert_eq!(is_ascii, [true, false, true]);

// We can still access the original array: it has not been moved.
assert_eq!(strings.len(), 3);
source

pub fn split_array_ref<const M: usize>(&self) -> (&[T; M], &[T])

🔬This is a nightly-only experimental API. (split_array)

Divides one array reference into two at an index.

The first will contain all indices from [0, M) (excluding the index M itself) and the second will contain all indices from [M, N) (excluding the index N itself).

§Panics

Panics if M > N.

§Examples
#![feature(split_array)]

let v = [1, 2, 3, 4, 5, 6];

{
   let (left, right) = v.split_array_ref::<0>();
   assert_eq!(left, &[]);
   assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
}

{
    let (left, right) = v.split_array_ref::<2>();
    assert_eq!(left, &[1, 2]);
    assert_eq!(right, &[3, 4, 5, 6]);
}

{
    let (left, right) = v.split_array_ref::<6>();
    assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
    assert_eq!(right, &[]);
}
source

pub fn rsplit_array_ref<const M: usize>(&self) -> (&[T], &[T; M])

🔬This is a nightly-only experimental API. (split_array)

Divides one array reference into two at an index from the end.

The first will contain all indices from [0, N - M) (excluding the index N - M itself) and the second will contain all indices from [N - M, N) (excluding the index N itself).

§Panics

Panics if M > N.

§Examples
#![feature(split_array)]

let v = [1, 2, 3, 4, 5, 6];

{
   let (left, right) = v.rsplit_array_ref::<0>();
   assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
   assert_eq!(right, &[]);
}

{
    let (left, right) = v.rsplit_array_ref::<2>();
    assert_eq!(left, &[1, 2, 3, 4]);
    assert_eq!(right, &[5, 6]);
}

{
    let (left, right) = v.rsplit_array_ref::<6>();
    assert_eq!(left, &[]);
    assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
}
source

pub fn as_ascii(&self) -> Option<&[AsciiChar; N]>

🔬This is a nightly-only experimental API. (ascii_char)

Converts this array of bytes into a array of ASCII characters, or returns None if any of the characters is non-ASCII.

§Examples
#![feature(ascii_char)]
#![feature(const_option)]

const HEX_DIGITS: [std::ascii::Char; 16] =
    *b"0123456789abcdef".as_ascii().unwrap();

assert_eq!(HEX_DIGITS[1].as_str(), "1");
assert_eq!(HEX_DIGITS[10].as_str(), "a");
source

pub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar; N]

🔬This is a nightly-only experimental API. (ascii_char)

Converts this array of bytes into a array of ASCII characters, without checking whether they’re valid.

§Safety

Every byte in the array must be in 0..=127, or else this is UB.

Trait Implementations§

source§

impl Clone for Nonce

source§

fn clone(&self) -> Nonce

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for Nonce

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Deref for Nonce

§

type Target = [u8; 15]

The resulting type after dereferencing.
source§

fn deref(&self) -> &Self::Target

Dereferences the value.

Auto Trait Implementations§

§

impl Freeze for Nonce

§

impl RefUnwindSafe for Nonce

§

impl Send for Nonce

§

impl Sync for Nonce

§

impl Unpin for Nonce

§

impl UnwindSafe for Nonce

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<'a, T, E> AsTaggedExplicit<'a, E> for T
where T: 'a,

§

fn explicit(self, class: Class, tag: u32) -> TaggedParser<'a, Explicit, Self, E>

§

impl<'a, T, E> AsTaggedImplicit<'a, E> for T
where T: 'a,

§

fn implicit( self, class: Class, constructed: bool, tag: u32, ) -> TaggedParser<'a, Implicit, Self, E>

source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

default unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> SendSyncUnwindSafe for T
where T: Send + Sync + UnwindSafe + ?Sized,